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ABSTRACT 
Compactly supported radial basis functions (RBFs) were 

used for surface reconstruction of in vivo geometry, translated 
from two dimensional (2D) medical images. RBFs provide a 
flexible approach to interpolation and approximation for 
problems featuring unstructured data in three-dimensional 
space. Point-set data are obtained from the contour of 
segmented 2-D slices.  

Multilevel RBFs allow smoothing and fill in missing data 
of the original geometry while maintaining the overall structure 
shape.   

  
INTRODUCTION 

Computer simulations of blood flow in arteries and veins 
are widely used by biomedical and bioengineering researchers 
to study the importance of hemodynamics, the fluid dynamics 
of blood.  Hemodynamics has been shown to be the key factor 
in the pathogenesis of atherosclerosis (Giddens et al 1993, Ross 
1993).  In particular, wall shear stress (WSS), has been 
investigated in the development of vessel lumen narrowing due 
to excessive tissue growth, intimal hyperplasia, and 
atherosclerosis. 

An accurate representation of in vivo geometry is required 
for accurate simulation.  Medical images, such as computerized 
tomography (CT), magnetic resonance imaging (MRI), and 
ultrasound (US), of a patient’s blood vessels were used to 
obtain the data set.  Regions of interest (typically the lumen) 
are chosen and segregated from the background.   

Compactly supported RBFs was chosen because of its 
simplicity and fast computation procedure.  On the other hand, 
global RBFs are useful in filling in for missing data. Therefore, 
multilevel RBF approach is used to integrate the best aspect of 
3D scattered data fitting with locally and globally supported 
basis functions.   

 

RADIAL BASIS FUNCTIONS 
The generic RBF representation of a function is of the form 
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to represent .  As the name implies, RBFs are generally of 
the form 
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with  
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and R is length scale that characterizes the support of the RBF. 
The compactly supported RBF employed here is 
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which was introduced by Wendland (1995), locally supported, 
and leads to a sparse matrix system.  
 
IMPLICATION OF RADIAL BASIS FUNCTIONS TO 
MEDICAL IMAGING 

In order to illustrate the implication of RBF approach on 
medical images, we considered a 2D example, or single slice of 
the stack of images. Segmentation of images is performed by 
thresholding and refined manually, pixel by pixel, to achieve 
the operator-perceived best description of the lumen geometry 
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(Fig 1b). The edge detection using discretized Laplace’s 
equation is employed to find the contour for the lumen, Fig 1C.    
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Figure 1: a) Single slices of MR images, b) Region of interest 
segregated from the background, c) Contour of the lumen after 
edge detection.  
 
 
Contour points from the image are representative of the surface. 
To these points, we assigned the value . In addition, we 
generate two auxiliary point sets that are just interior and 
exterior to the surface points (Fig 2). 
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Figure 2:  Points set for RBF where as surface points as white, 
interior (o) and exterior (*) for 2D implicit surface definition. 
 
 
We assigned g for the interior points, and g for the 
exterior points.  We solve for 

1= 1= −

c  and then evaluate ( )f x  to 
determine the contour. The resulting contour for a 2D RBF is 
shown in Fig 3a.  
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Figure 3: a) Approximation of contour of 2D image using RBF 
approach, b) surface reconstruction of a stenosed carotid using 
RBF approach, c) surface reconstruction of a pig arteriovenous 
graft using RBF approach.  

 
The RBF approach remains the same for 3D surface 

reconstruction. In 3D space, z-level is taken into consideration. 
The results for 3D surface reconstruction are shown in Fig 3b-c. 

 
CONCLUSION 

This study demonstrates the application of RBFs on 
medical imaging to determine the lumen surface of an in vivo 
vessel geometry.    
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